

Perspectives on the use of satellite data for emission evaluation: Conclusions from the SEEDS project

<u>Leonor Tarrasón</u> (NILU), Jieying Ding, Ronald van der A and Henk Eskes (KNMI), Jenny Stavrakou, Glenn-Michael Oomen and Jean-François Müller (BIRA-IASB), Paul Hamer (NILU), Jean-Christophe Calvet (CNRM), Emanuele Emili (CERFACS/BSC), Joaquim Arterta, Nicolas Frebourg, Virginie Marecal (MF), Isadora Jimenez, Pau Moreno, Jorge Calvin and Christel Michel (Lobelia/IsardSAT)

TFEIP 2024 meeting – 16th May 2024

SEEDS – H2020 project

Sentinel EO-based Emission and Deposition Service

- The SEEDS project goal was to develop several top-down (satellite) inversion techniques to estimate European emissions of NOx, NH3, VOC, improve deposition flux modelling and develop advanced data assimilation techniques.
- The project has developed techniques that may eventually become part of the Copernicus Atmosphere Service (CAMS).
- > SEEDS has compiled a significant number of datasets in our portal for further evaluation.

Sentinel 5P & Preparation for Sentinel 4

SEEDS – Products

https://www.seedsproject.eu/data

SEEDS uses inverse modelling to produce up-to-date high-resolution estimates of NOx, NH₃ and biomass burning emissions.

- NOx 2019,2020 -2022 Monthly anthropogenic NOx emissions at up to 5 km resolution
- NH₃ 2019, 2020 -2022 Monthly NH₃ emissions with 20 km resolution
- Fires 2018-2020 -2022 Daily top-down biomass burning emissions at 10 km resolution
- Soil NOx 2019, 2020 -2022 Agricultural soil NOx emissions at up to 5 km resolution
- BVOC 2018-2020 -2022 Top-down and bottom-up estimates of Biogenic Organic Compounds with 10 km resolution
- LAI 2018-2029 2022 Leaf area index data sets at 10 km spatial resolution
- Soil Moisture 2018- 2020 -2022 Soil moisture datasets at 10 km spatial resolution
- Deposition 2018-2020, -2022 Deposition fluxes and diagnostics (e.g., stomatal resistance) for ozone and nitrogen at 10 km spatial resolution

SEEDS is part of CAMS evolution under the H2020 space program

https://atmosphere.copernicus.eu Global Daily AQ forecasts

SEEDS – H2020 project

Sentinel EO-based Emission and Deposition Service

What makes TROPOMI unique?

TROPOMI combines 4 unique features:

Large spectra range (large # of trace gas species) High signal-to-noise

High spatial resolution (3.5 x 5.5 km)

.5 km) Daily global coverage

TROPOMI Operational Data products

KNMI | DLR | BIRA-IASB | SRON | RAL | IUP-Bremen | MPIC | FMI | ESA

Development of supplementary products: SIF, AOD, CHOCHO, HONO, ALH

Up-to-date (UTD) anthropogenic emission estimates of NOx, NH₃ and biomass burning

SEEDS to prove the capabilities of satellite based – emissions and enable the provision of improved temporal emission products complementing the existing emissions currently available in CAMS.

Emission estimation method:

Inversion technique using satellite observations and a chemical transport model:

DECSO (developed by KNMI)

MAGRITTE v1 (developed by BIRA_IASB)

Products:

NO2 From TROPOMI
NH3 emissions from CRIS
HCHO from TROPOMI

Up-to-date (UTD) biogenic emission estimates for NOx and BVOC

SEEDS to produce new up-to-date emissions of biogenic organic compounds (BVOC) and soil emissions of nitrogen oxides (NOx) making use of satellite data through inverse modelling approaches and through data assimilation in land-surface vegetation models.

Emission estimation method:

Inversion technique using DECSO and MAGRITTE

MEGAN v3 based on SURFEX LAI and SM

Products:

NO2 from TROPOMI

HCHO from TROPOMI

LAI from Proba -V and AVHRR

Soil Nox emissions from satellites – added value

Results for Europe

Nox Soil from residual information using DECSO inverse modelling and TROPOMI satellite data

Biogenic VOC emissions from satellites

Large top-down BVOC emissions in southern Europe due to high (bias-corrected) HCHO column measurements from TROPOMI

NOx emissions - Regions at various resolutions

Comparison to CAMS emissions

Timeseries checks with use of satellite data

Sentinel-5P NO₂ tropospheric column, 2019 yearly mean

HERMESv3 versus DECSO

Comparisons for NOx emissions in Barcelona area

- NOx emissions in Barcelona (2019)

 HERMES MEGAN DECSO ant DECSO bio

 17.5

 15.0

 10.0

 7.5

 5.0

 2.5

 0.0

 F M A M J J A S O N D
- Barcelona
 Supercomputing
 Center
 Centro Nacional de Supercomputación

- 27.3 kton NO₂/year according to HERMES, which is about 34% of the total emissions found in Catalunya.
- DECSO estimates slightly less NOx emissions for this area: 26.1 kton NO₂/year.
- Although differently distributed over the grid cells, the aggregated emissions are well in line.
- No strong seasonalities identified neither in HERMES nor DECSO

Industrial hotspot in Alcanar, Spain

- A strong registered point source in HERMES
 (1.33 kton NO₂/year) → emissions derived from the Large Point Source Database provided by the Spanish Ministry of Environment
- The DECSO estimation, however, is 74% lower:
 0.35 kton NO₂/year
- Results from the Continuos Emission Monitoring System provided by the Government of Catalonia indicate emissions of 1.1kton NO₂/year
- The large disagreement is not well understood, and subject of further investigation (factory hotspot hardly visible in the level-2 TROPOMI satellite product, errors in the assumed surface albedo?)

Comparison for NOx emissions in Girona area

Barcelona
Supercomputing
Center
Centro Nacional de Supercomputación

- Results in total annual emissions agree very well, with HERMES having slightly stronger emissions.
- Important differences in the seasonal cycle: DECSO shows a continuous decrease during OND, while HERMES mantains almost constant emissions
- Influence of emissions from agricultural machinery and associated crop calendar re-considered in HERMES

Crop type	Soil cultivation	
	Start_date	End_date
Wheat	1 st November	31st December
Rye	1 st September	31 st October
Barley	1 st November	31st December
Oat	1 st October	31 st November

Biggest industrial emitters (NOx) in Serbia

Benchmarking ammonia emissions from satellites

NH3: Spatial distribution of ammonia emissions

Ammonia Comparison of country totals top-down vs bottom-up emission estimate

Monthly variations – Benchmarking in Catalonia

Winter months 80 HTAP 60 FEW 50 10 10 EW 50 10 EW 50

Summer months

20

60

NH3 in situ [ug/m3]

80

60

NH3 in situ [ug/m3]

20

NH3 Benchmarking in the Netherlands

Key messages

 Satellite AQ information through inverse modelling can be used to support the review and verification of emission data - cooperation between TD+BU communities = enhanced knowledge

• Location/Resolution

- Spatial resolution of EO-based emissions still a challenge even with TROPOMI
- Locating sites of very limited value in most European countries Possibly applications in other parts of the world
- NOx soil emission in summer identify from satellite

Timeseries and time variations

- Verifying year to year variations -
- Estimating monthly/weekly variations in emissions Sentinel 4 is Geostationary and will enable diurnal variations
- Checking emissions from sources that drop below thresholds... and gap filling datasets

Emission outlier checks

- Reported vs EO-based emissions even if EO-based data is not specific to a point source, is still of value in identifying issues.
- Possible additional analysis with pollutant ratio checks for instance with CO can be informative for QA/QC purposes

Thank you for your attention!

