

Emission reductionpotential of hybrid vehicles

Study performed by Consortium VUB – TNO and EMISIA

DEPARTMENT OF ENVIRONMENT & SPATIAL DEVELOPMENT Presentation by Natacha Claeys in cooperation with Giorgos Mellios and Nils Hooftman

Why study Zero-Low-Emmision vehicles (ZLEV)?

Goverments and PHEV's

International and EC legislation:

- \rightarrow Climate change and air quality directives
- \rightarrow CO₂ regulation of cars, light duty vehicles, heavy duty vehicles
- \rightarrow Clean Power for Transport
- National and regional goverments' motive
 - → PHEVs as 'way-maker' for EVs and economic viability charging infrastructure
 - \rightarrow Potential technology for electric driving most of the time
 - \rightarrow More efficient power trains = CO₂ down
 - \rightarrow Improving local air quality

• Emission inventory

 \rightarrow Reporting road transport emissions

Results of the study

- Part I 'Literature' study for LDV and HDV
- ▶ Part II 'Measurement campaign of PHEV –M1-cars'
- Part III 'Modelling real emission factors for PHEV developmentof methodology'

- New actual EF M1-cars/bus

- \rightarrow See presentation of EMISIA (Giorgos Mellios)
- > Part IV 'Additional reduction potential for cars in the future'
- Part V 'Impact assessment on M1'

 \rightarrow EF

- \rightarrow EIV (actual/ projections)
- Policy lessons?
- Future studies necessary?

Actual M1-cars

See presentation of EMISIA (Giorgos Mellios)

The benefits of the PHEVs are actually coming from the electric (CD) part of the vehicle operation, rather than from the ICE (CS). This reflects in the results of the UF.

UF						
Urban	Rural	Highway				
0,5	0,5	0,2				

Addditonal reduction potential for futures cars M1

Future PHEVs scenarios

Parameters studied

- \rightarrow Road load
 - \times Reduction in tyre-road friction (F₀)
 - \times Reduced aerodynamic drag (F₂)
- \rightarrow Thermal engine efficiency
- → Vehicle weight
- \rightarrow Battery and electric motors

Changes based on literature and analysis of the EEA database

Simulation cases

• For each parameter the improvements were divided in three steps, with the first being the least optimistic scenario and the third the most optimistic

Change in:	F ₀ (%)	F ₂ (%)	ICE eff. (%)	Battery Capacity (%)	Weight (%)	El. motor eff. (%)	
Case 0	0%	0%	0%	0% 0%		0%	
Case 1	-4%	-10%	0%	0%	0	0%	
Case 2	-12%	-20%	0%	0%	0	0%	
Case 3	-22%	-30%	0%	0%	0	0%	
Case 4	0%	-10%	0%	0%	0	0%	
Case 5	0%	-20%	0%	0%	0	0%	
Case 6	0%	-30%	0%	0% 0		0%	
Case 7	0%	0%	10%	0%	0	0%	
Case 8	0%	0%	20%	0%	0	0%	
Case 9	0%	0%	30%	0%	0	0%	
Case 10	-12%	-20%	20%	0%	0	0%	
Case 11	-12%	-20%	20%	0%	-4%	0%	
Case 12	-12%	-20%	20%	0%	-8%	0%	
Case 13	-12%	-20%	20%	0%	-12%	0%	
Case 14	-12%	-20%	20%	0%	0%	3%	
Case 15	-12%	-20%	20%	0%	0%	6%	
Case 16	-12%	-20%	20%	0%	0%	9%	
Case 17	-12%	-20%	20%	20%	-1.9%	0%	
Case 18	-12%	-20%	20%	40%	-1.6%	0%	
Case 19	-12%	-20%	20%	60%	-1.3%	0%	
Case 20	-4%	-10%	10%	20%	-4%	3%	
Case 21	-12%	-20%	20%	40%	-8%	6%	
landers	-22%	-30%	30%	60%	-12%	9%	

Results

Energy consumption reduction for the combined scenarios, compared to Baseline 1 (case 0)

Flanders State of the Art Observed reductions due to the combined effect of technical (efficiency) improvements and increase in utility factor

Impact assesment M1 on projection scenarios WEM - WAM

Assumptions – New Fleet

Fuel technology distribution for the new fleet

Assumptions

Different mobility

WEM \rightarrow normal grow vkms WAM \rightarrow lower grow vkms

- Initial analysis was based on COPERT version 4
 - → Presented → Cumulative effect from COPERT 5.3 (EF for conventional and hybrid CS cars) and new EF from PHEV (upcoming in COPERT 5)

Assumptions

Total fleet - fuel technology distribution

Impact on CO₂ emission

► WEM

► WAM

Impact on NOx emissions

Explanation of NOx diesel impact

NOx (g/km)		Current Efs		New Efs						
		based on COPERT 4.11		based on COPERT 5.3		Rel. %				
		Urban	Rural	Highway	Urban	Rural	Highway	Urban	Rural	Highway
Diesel small	Euro 6 <2017	0,649	0,423	0,505	0,563	0,422	0,505	-13%	0%	0%
	Euro 6 2017-19	0,214	0,140	0,167	0,430	0,323	0,386	101%	131%	132%
	Euro 6 2020+	0,153	0,100	0,119	0,209	0,157	0,187	36%	57%	57%
Diesel medium	Euro 6 <2017	0,649	0,423	0,505	0,563	0,422	0,505	-13%	0%	0%
	Euro 6 2017-19	0,214	0,140	0,167	0,430	0,323	0,386	101%	131%	132%
	Euro 6 2020+	0,153	0,100	0,119	0,209	0,157	0,187	36%	57%	57%
Diesel large	Euro 6 <2017	0,649	0,423	0,505	0,563	0,422	0,505	-13%	0%	0%
	Euro 6 2017-19	0,214	0,140	0,167	0,430	0,323	0,386	101%	131%	132%
	Euro 6 2020+	0,153	0,100	0,119	0,209	0,157	0,187	36%	57%	57%
	Euro 5	0,788	0,514	0,613	0,683	0,513	0,613	-13%	0%	0%

Upgrade in COPERT 5 for Euro 6 (2017/2020 and 2020+) conventional diesel cars

Conclusions impact analysis of new EF on CAR Fleet scenarios

▸ For CO₂-emissions

 \rightarrow No major impact on WEM and WAM scenario

For NOx-emissions

→ Major impact on WEM because of higher EF of conventional diesel cars Euro 6 (2017 and up) in COPERT 5.3

× Negative impact on local air quality!

 \rightarrow Impact increases in the WEM scenario in time because of introduction of Euro 6 diesel cars (2017/2019 and 2020+) in the fleet

General conclusions

Plug-in hybrids

- Are stimulated by the European Commission
 - \rightarrow In order of to achieve the climate and air quality goals

Potentially sustainable way-maker for EVs

- → Depends heavily on state-of-charge and how the vehicle is driven
- → Difficult for governments to control this -> measurements!
- No incentives for OEMs to make better PHEVs
 - \rightarrow Small engines + large batteries are OUT
 - \rightarrow Large engines + small batteries are IN
 - → Scenarios for future PHEV presented, but which case will become reality?
- Future for PHEVs depend on local measures (2030-35 vision)

 \rightarrow Incentives + infrastructure

Plug-in hybrids

LCV & HDV

- \rightarrow LCVs to follow cat M1 market?
- \rightarrow HDVs to pick 'lower-hanging' fruits before electrifying

Thanks to the research team :

Hooftman N. (VUB), Ligterink N. (TNO), Paalvast M. (TNO), van Gijlswijk R. (TNO), Voogd E. (TNO), Mellios G. (EMISIA), Samos Z. (EMISIA), Mamarikas S. (EMISIA), Kapetanios N. (EMISIA) and Verhoeve W. (EMISIA)

This project was funded by the Department of Environment and Spatial Development of Flanders Project coordinator: Natacha Claeys