

TFEIP Meeting 2024 14th – 16th May, Dessau, Germany

Air quality and population exposure assessment within the SALPIAM project: methodological framework

Giorgio Cattani

Italian Institute for Environmental Protection and Research (ISPRA), Rome, Italy

On behalf of the SALPIAM working group on air pollution assessment (task 2):

Alessandra Gaeta¹, Maria Antonietta Reatini¹, Marco Cordella¹, Antonio Amoroso¹, Andrea Bisignano⁵, Lorenzo Angiuli³, Maria Chiara Bove⁵, Fabio Cadoni¹, Mariacarmela Cusano¹, Riccardo De Lauretis¹, Alessandro Di Giosa², Alessandro Di Menno di Bucchianico¹, Federico Grasso⁵, Gianluca Leone¹, Simona Lucci², Giada Marchegiani¹, Angela Morabito³, Raffaele Morelli¹, Tiziano Pastore³, Daniela Romano¹, Giulio Settanta¹, Miriam Sileno⁴, Carla Ancona⁶, Lucia Bisceglia⁷

¹ISPRA; ²ARPA LAZIO; ³ARPA PUGLIA; ⁴ARPA MARCHE; ⁵ARPA LIGURIA; ⁶DEP LAZIO; ⁷ARESS PUGLIA

The SALPIAM project: Environmental Sustainability and citizens' health in selected Italian port cities

Funded by the Italian Ministry of Health - Complementary plan to Italy's recovery and resilience Mission: 6 "Health", Component: C.1 "Proximity networks, structures and telemedicine for local healthcare" Investment: E.1 Health, Environment, Biodiversity, Climate

Investment Line: 1.4 Promotion and financing of applied research with multidisciplinary approaches in specific areas of health-environment-climate intervention. Area: B – programs that involve actions with high synergy with other institutions/sectors. Line of intervention: 3: Support in the development of cities for healthier, more inclusive, safer, more resilient and sustainable environments;

Project leader: Regional Agency for Health and Social – Apulia Region

Partners:

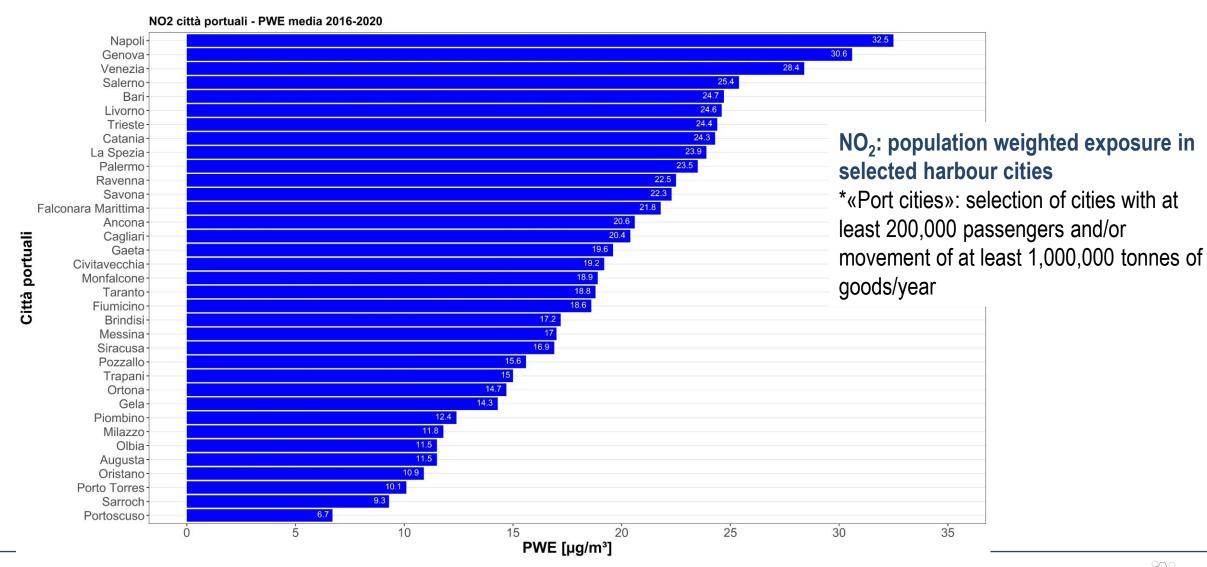
- Department of Epidemiology, Lazio Region Health Service/ASL Roma 1, Rome, Italy.
- Department of Earth, Environment and Life Sciences, University of Genoa
- Tuscany Regional Environmental protection agency
- Marche Regional Environmental protection agency
- Medical Statistics Unit, University of Campania "Luigi Vanvitelli," Naples, Italy
- ► Italian Institute for Environmental Protection and Research (ISPRA), Rome, Italy.

Main goal

The general objective of the project is to develop promotional actions, provide indications and support for policies and regulations regarding sustainable urban planning for the purpose of reducing the environmental pressure of impacts on human health in urban contexts characterized by the presence of ports

Target cities:

- Genoa
- Piombino (Livorno)
- Civitavecchia (Rome)
- Ancona
- Bari
- Brindisi
- Cagliari


The SALPIAM project tasks

- **Governance** support
- **Environmental exposure assessment (air pollution and noise)**
- Air and noise pollution **health impact assessment**: disentagle the port activities and ships contribute.
- Strengthening of epidemiological surveillance activities
- Air quality and noise **impacts mitigations**: interventions effectiveness assessment.
- Results dissemination
- **Training** activities

Background

Task 2: Environmental exposure assessment: air pollution

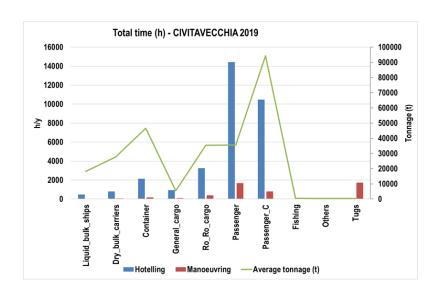
The study is focused on five Italian port cities:

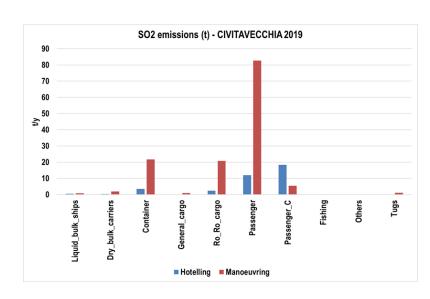
Genoa, Ancona, Civitavecchia, Bari and Brindisi.

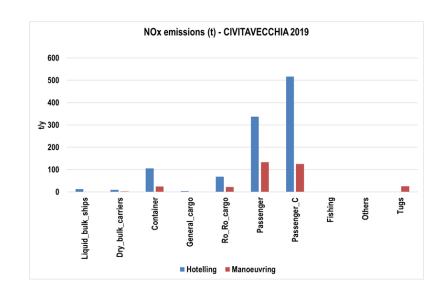
- Naval activities emissions' load fine tuned.
- 2. Population exposure assessment at high spatial resolution.
- 3. Trend analyses meteorologically adjusted.

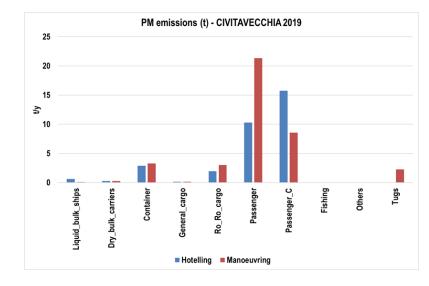
A five steps methodological framework.

Alessandra Gaeta¹, Maria Antonietta Reatini¹, Marco Cordella¹, Antonio Amoroso¹, Andrea Bisignano⁵, Lorenzo Angiuli³, Maria Chiara Bove⁵, Fabio Cadoni¹, Mariacarmela Cusano¹, Riccardo De Lauretis¹, Alessandro Di Giosa², Alessandro Di Menno di Bucchianico¹, Federico Grasso⁵, Gianluca Leone¹, Simona Lucci², Giada Marchegiani¹, Angela Morabito³, Raffaele Morelli¹, Tiziano Pastore³, Daniela Romano¹, Giulio Settanta¹, Miriam Sileno⁴, Carla Ancona⁶, Lucia Bisceglia⁷ and Giorgio Cattani¹

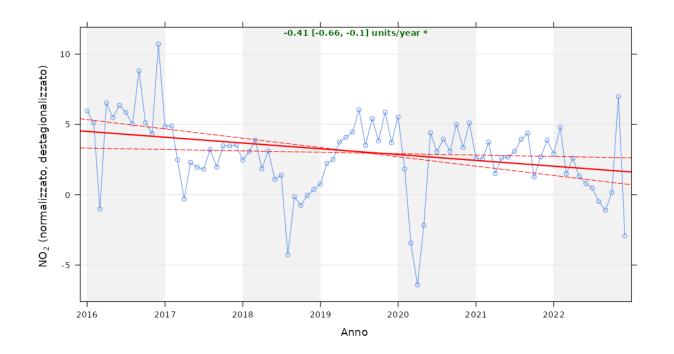

¹ISPRA; ²ARPA LAZIO; ³ARPA PUGLIA; ⁴ARPA MARCHE; ⁵ARPA LIGURIA; ⁶DEP LAZIO; ⁷ARESS PUGLIA

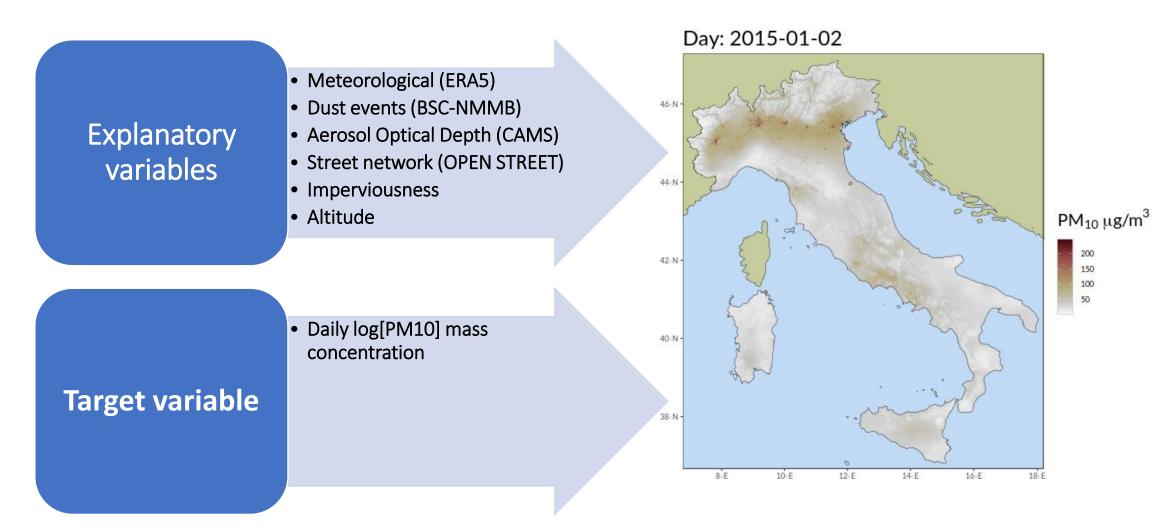



Step 1: Detailed assessment of shipping emissions, using the Bottom Up Harbor software (BUH), which implements the European reference methodology

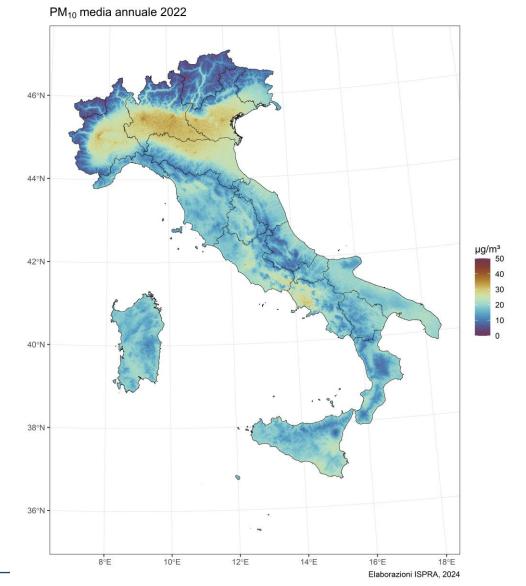

Extremely detailed picture of the shipping related emission by kind of ship and related operational phase.

Reference years: 2019 and 2021




Step 2: Long-term air quality trend analysis seasonally and meteorologically adjusted

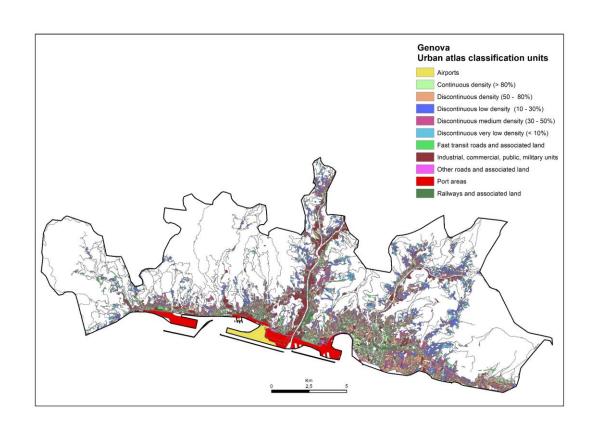
- √ 35 monitoring stations included
- ✓ PM₁₀, PM_{2.5}, NO₂
- ✓ non-parametric Seasonal Kendall Test approach (Hirsch et al., 1984), using the Theil-Sen estimate of the slope (Theil 1950; Sen 1968).
- meteorologically adjusted trend assessment using Generalized Additive Models (GAMs)



Step 3: Spatio-temporal modelling of daily concentrations in Italy using the SPDE approach

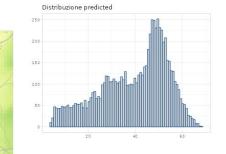
Step 3: National scale spatially resolved exposure assessment at 1 km²

- ✓ Retrospective assessment (2013-2022)
- ✓ Target pollutants:
 - ✓ PM₁₀, PM_{2.5}, NO₂
- ✓ Annual mean used for health impact assessment




Step 4: Assessing the pollutant small scale spatial variability within grid cell, while capturing local sources contribution in a LUR-GAM framework

- Selection of possible explanatory variables:
 - Imperviousness Density (Buffer 25,50,100 m)
 - Urban Atlas Building Height (Buffer 25,50,100 m)
 - Corine Land Cover (Buffer 25,50,100):
 - Urban Atlas Land Cover/Land Use (Buffer 25,50,100 m)
 - Normalised Difference Vegetation Index (NDVI)/Leaf area index (LAI) (Buffer 25,50,100 m)
 - Population density (ISTAT) (Buffer 25,50,100 m)
 - Road network (Open Street Map) (Buffer 25,50,100 m)
 - Contribution of ship emissions by prevailing wind direction



Step 5: monitoring campaigns as case studies with PM chemical characterization at selected cities

- ➤ Very-low volume devices for high spatial resolution PM₁₀ sampling
- ➤ Quantitative source apportionment by Positive Matrix Factorization (PMF) (e.g. Massimi et al, 2022).
- ➤ PM main and traces components Spatio-temporal variability using GAMs (RespiraMi Conference, Morelli et al., 2024).

Example result from a previous study in Terni (Italy)
RespiraMi Conference, Morelli et al., 2024.

